Social Anchor: Privacy-Friendly Attribute Aggregation From Social Networks
نویسندگان
چکیده
منابع مشابه
Privacy-preserving Attribute Matchmaking in Proximity-based Mobile Social Networks
The major impediments that mostly arise in matchmaking in mobile social networks are ensuring the privacy of users’ attributes, finding the intersection of attributes of the matched-pair without revealing any other information, and ensuring that the matchedpair get to know the intersection mutually. Also, in virtually all the existing protocols, the initiator of the matchmaking does not set a t...
متن کاملA centralized privacy-preserving framework for online social networks
There are some critical privacy concerns in the current online social networks (OSNs). Users' information is disclosed to different entities that they were not supposed to access. Furthermore, the notion of friendship is inadequate in OSNs since the degree of social relationships between users dynamically changes over the time. Additionally, users may define similar privacy settings for their f...
متن کاملA Sudy on Information Privacy Issue on Social Networks
In the recent years, social networks (SN) are now employed for communication and networking, socializing, marketing, as well as one’s daily life. Billions of people in the world are connected though various SN platforms and applications, which results in generating massive amount of data online. This includes personal data or Personally Identifiable Information (PII). While more and more data a...
متن کاملPrivacy in Social Networks
This synthesis lecture provides a survey of work on privacy in online social networks (OSNs). This work encompasses concerns of users as well as service providers and third parties. Our goal is to approach such concerns from a computer-science perspective, and building upon existing work on privacy, security, statistical modeling and databases to provide an overview of the technical and algorit...
متن کاملInferring Privacy Information from Social Networks
Since privacy information can be inferred via social relations, the privacy confidentiality problem becomes increasingly challenging as online social network services are more popular. Using a Bayesian network approach to model the causal relations among people in social networks, we study the impact of prior probability, influence strength, and society openness to the inference accuracy on a r...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: IEEE Access
سال: 2020
ISSN: 2169-3536
DOI: 10.1109/access.2020.2981553